Study finds: Your bones affect your appetite and metabolism.

Canadian researchers, from the Montreal Clinical Research Institute (IRCM) in Canada found that a hormone produced by our bones, called osteocalcin, affects how we metabolise sugar and fat.

A study has found that our skeleton is much more than the structure supporting your muscles and other tissues, it affects our appetite and metabolism too.

Researchers from  studied the hormone produced by our bones, called osteocalcin, which affects how we metabolise sugar and fat.

They unveiled a new piece of the puzzle that explains how osteocalcin works. The discovery may someday open the door to new ways of preventing type 2 diabetes and obesity.

Mathieu Ferron, director of the IRCM’s Integrative and Molecular Physiology Research Unit said, “Just think about how women are more prone to suffer from osteoporosis when they reach menopause because their oestrogen levels drop.”

However, the idea that bone itself can affect other tissues took root only a few years ago with the discovery of osteocalcin. Thanks to this hormone, produced by bone cells, sugar is metabolised more easily.

“One of osteocalcin’s functions is to increase insulin production, which in turn reduces blood glucose levels.It can also protect us from obesity by increasing energy expenditure,” Ferron said.

The hormone builds up in bone, and then, through a series of chemical reactions, is released into the blood.

Ferron noted,“When it is first produced in osteoblasts, osteocalcin is in an inactive form.”

“What interested us was understanding how osteocalcin becomes active so as to be able to play its role when released into the blood,” he said.

The researchers demonstrated that an enzyme, which acts like molecular scissors, is required. Inactive osteocalcin has one more piece than active osteocalcin.

Ferron’s team succeeded in identifying it: furin. It causes osteocalcin to become active and the hormone is then released into the blood.

“We demonstrated that when there was no furin in bone cells, inactive osteocalcin built up and was still released, but this led to an increase in blood glucose levels and a reduction in energy expenditure and insulin production.”